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J. Phys. A: Math. Gen. 19 (1986) 3353-3359. Printed in Great Britain 

Structure function, susceptibility and correlation lengths at 
critical points for infinite strips with periodic boundary 
conditions 
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t Laboratory for Surface Science and Technology and Department of Physics, University 
of Maine, Orono, ME 04469, USA 
$ Turktelefon, Izmir, Turkey 

Received 26 June 1985, in final form 4 November 1985 

Abstract. We employ the results of conformal invariance at critical points to calculate the 
structure function S ( k ) ,  bulk susceptibility ,y and correlation lengths (defined via moments 
of the correlation function) for infinite strips with periodic boundaries. Analytic formulae 
for operators with anomalous dimension 0s x s 1 are obtained. The correction to the 
leading asymptotic form of S for large Ikl is determined. The convergence to the leading 
1/ k2-*” behaviour is shown to depend on x and be slow for x =i, the Ising spin-spin 
correlation function value. For x = 1, S is found to display a logarithmic lineshape. 

By use of the conformal invariance of critical correlation functions (Polyakov 1970), 
Cardy (1984) has determined the two-point correlation function in an infinite strip of 
width L with periodic boundary conditions 

In (1) the separation of the two points along the strip is y = y ,  - y 2 ,  while 8 = 8, - O2 
refers to the separation across the strip. In the formulae that follow (except (2)-(5)) 
we set L = 27r for simplicity. Results for general L may be obtained by use of (1) and 
the definition of the quantity of interest, or equivalently by use of standard scaling 
relations. 

Equation (1) is normalised so that g+  l / r2” for r +  0, where r is the distance 
between the points. Note that as y + m  

g -+ exp[ -x (2~ /L)y l  ( 2 )  
so that the corresponding correlation length (defined via the asymptotic behaviour of 
g )  is 

s y =  (1/2TX)L (3) 
(Cardy 1984). 

In this paper we report results for the structure function (scattering function, when 
g is the order parameter-order parameter correlation function) which we define as the 
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Fourier transform of (1) per unit area. Here the two points (e1, y,) and ( 0 2 ,  y2) must 
each be integrated over the strip in the transform, since each (e1,  y,) or ( 0 2 ,  y2) value 
arises from the scattering amplitude from a scatterer at that location. Thus 

S(ky, k , )=L[+mdy L --oo [-:dO(l-F)g(y, e)exp[i(kyy+k,8)]. (4) 

The separate integration of 8, and O2 over a finite region gives rise to the term with 
101 in (4) and additionally limits the range of 0 values included. Hence, the full 
periodicity of g in 8 is not used and we have a Fourier integral rather than a Fourier 
series. Of course our results for S(k,,, k, )  coincide with the Fourier series coefficients 
at corresponding k, values. 

The evaluation of (4) is carried out below. The (bulk) susceptibility x (integral 
of the correlation function per unit area) is simply S(0). The correlation lengths, 
defined as moments via 

(and similarly for [(B" by replacing y 2  by 0') may then be obtained by direct integration 
or from the second derivatives of S at k = 0. The reason for the factor of on the 
RHS of (5) will become clear on comparison of 6:) and 5im). 

Using (1) and the identity 

( 6 )  A-" =- [om exp(-uA)u"-' du 
V X )  

f( ky)  = 2 Ki k, (2u) 

in (4), S becomes a weighted integral over u of a k ,  dependent factor 

(7) 
and a k, dependent factor 

where K and I are modified Bessel functions. The coefficients in (8) are expressible as 

On integration over U one finally obtains (for strips of width 27r) 

r ( ( x +  k +iky)/2) 
k = l  r(1- (x  - k+iky)/2)  

It should be noted that the correlation function g, as given by ( l ) ,  is only determined 
up to a non-universal multiplicative constant. The same factor affects the structure 
function and susceptibility but not the correlation lengths, since in this latter case it 
is divided out (see equation (5)). 
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It follows from (1  1) that the bulk susceptibility in an infinite strip of width 27r is 

(12) 
r 2 ( x / 2 ) r ( i  - x )  47r ~ ( ~ 1 2 ,  ~ 1 2 )  
r2( 1 - ~ / 2 ) r ( ~ )  

=-- x = S(0) = 7r 
x B( - ~ / 2 ,  - ~ / 2 )  

where B is the beta function (Abramowitz and Stegun 1964). It is straightforward to 
expand x for small x or small E = 1 - x  

x = (47r/x)(l +t5(3)x3+&(5)x5+O(x6))  

= (47r/x) (1  + 0 . 6 0 1 ~ ~  + 0.389x5+ 0 ( x 6 ) )  

= ( T / E ) ( ~  + 2.77268 + 3 . 8 4 3 6 ~ ~ + 4 . 1 5 3 3 ~ ~  + O ( E ~ ) )  

(13) 

(14) 

x = (T/E)[  1 + 4(ln 2 ) ~  + 8(in2 2).s2+ (gA(3) -:5(3) + y  in3 2 ) ~ ~  +o( E ~ ) ]  

where 5 denotes the zeta function and A is defined in Abramowitz and Stegun (1964). 
These results are illustrated in figure 1. 

The divergence of ,y as x + 1 arises from the short distance behaviour of g - 1/ r2 .  
This only occurs in the continuum limit; the integral will be cut off at r approximately 
equal to the lattice spacing for any physical system. The value of the cutoff is not 
determined by the conformal theory. 

As x + 0, conversely, x diverges due to the diverging range of g in the y direction 
(cf equation (3)). It is noteworthy that for the Ising spin operator ( x = Q )  x is given 
by the leading term (in equation (13)) to within 0.12% (Cardy 1985). This occurs 
because the correlation function g for such small x values is essentially one dimensional. 

0 0.2 0 4 0.6 0.8 1.0 
X 

Figure 1. Bulk susceptibility (integral of the order parameter-order parameter correlation 
function per unit area) ,y for an infinite strip of width 2.rr with periodic boundary conditions 
plotted against anomalous dimension x. Full curve: conformal result (equation (12)).  
Broken curve: leading behaviour as x+O ( x  = 4 n / x ,  equation ( 1 3 ) ) .  Chain curve: leading 
behaviour as x + 1 ( x  = ~ / ( l  -x ) ,  equation (14)). Results for strips of width L follow 
from ordinary scaling, x (L)=x(2 . r r ) (L /2~) ’ - ’~ ,  O G X G  1. x is only determined up to a 
non-universal multiplicative constant (see text). 
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The correlations lengths were determined for strips of width 27r as explained above 
with the result 

p = i($'(X/2) - $'( 1 - X / 2 ) y 2  (15 )  

where IC, is the digamma function. Privman and Redner (1985) report a closely related 
quantity for self-avoiding walks: We also found 

For x +  0 or E = 1 - x +  0, we obtain 

sir"' = ( l /x ) [  1 -$5(3)x3 -!5(5)x5+ 0(x6)]  

= ( 1 / ~ ) ( 1 - 0 . 3 0 0 5 ~ ~ - 0 . 1 2 9 6 ~ ~ + 0 ( ~ ~ ) )  

= 2 . 9 0 1 ~ ' / ~ ( 1 + 0 . 9 5 5 1 ~ ~ + 0 ( ~ ~ ) )  

.p = ( T / ~ ) (  1 - h7r2x2 + o ( ~ ~ ) ) .  
For E + 0 ,  .$(e"' vanishes as These results are shown in figure 2 along with .$:) 

(equation ( 3 ) )  for comparison. Note that .$if") vanish as x-, 1 due to the divergence 
of x which appears in the denominator of (5). The factor of i in the definition of 
t(m) (equation ( 5 ) )  may now be justified by .$$"'-. 6:' as x+O. For the one- 
dimensional function g = e-'', the two correlation lengths coincide exactly. For the 
Ising spin case (x = $) they differ by only 0.06%, consistent with our result for x. 

0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , I  

0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 2. Correlation lengths for an infinite strip of width 2 with periodic boundary 
conditions plotted against anomalous dimension x. Full curve: correlation length in the 
long ( y )  direction tim' defined as a moment (equation ( 5 ) ) .  Dotted curve: correlation 
length in the long direction defined via the asymptotic value of the correlation function, 
Sp' = l /x  (equation (3)). Broken curve: moment correlation length in the short ( e )  direction 
f(g". For strips of width L, [(L) = ( ( 2 ~ r ) ( L / 2 ~ ) .  
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Finally, we discuss the behaviour of S (  k ) ,  again for strips of width 27~. For x + 0,  
one has 

L A  S ( 4 ,  ke) =- [ A  + ( 2 y A  + B ) x + 0 ( x ’)I 
x2+ k: 

where y is Euler’s constant and 

Note that for k, = 0, one has A = 2 7 ~ ,  B = 4.rr Re +(iky /2)  and 

4 7Tx 
x2+ k$ 

s=- { 1 + 2[ y + Re + ( i k y / 2 ) ] x  + O ( x 2 ) } .  

As x + 0, (20 )  reduces to 

S (  k,, ke) = 46( 4 )  sin2 rk,/  k i  (23)  

due to the one-dimensional behaviour of g in this limit. 
For ‘intermediate’ values of x, 0 < x < 1 ,  S exhibits a pronounced maximum at 

k = 0 with subsidiary peaks located at k, = 0 and k,  = +$, *$, . . . , with heights that 
decrease with Ik,l. These features are due to the periodicity of g in the 6 coordinate. 
As x increases, the half-width of the maximum at k = 0 in the y direction follows the 
trend of the (inverse) behaviour of the corresponding correlation length .$m). The 
half-width in the 0 direction also increases as x increases from 0,  but more slowly. At 
x = 0.6 the two half-widths are approximately equal. The subsidiary maxima also 
broaden much more rapidly in the k, direction than the ke direction as x increases. 

The behaviour of S as I ~ ~ + C O  may also be determined. From ( 1 1 )  one finds, for 
ke=O and Ik,I+CO, 

k;2+0(k;4)) 
s=--(2> r( 1 - x )  k, 2(x -1 )  ( 1 +  x ( x  - l ) ( x  - 2 )  

U X )  3 

while for k, = 0 and ke = *integer, lkel+ CO, 

x ( x - l ) ( x - 2 )  k;2+0(k;4)) 
s=.-+) r( 1 - x )  k, 2(x - ’ )  (1- 

U X )  3 

Note that the convergence to the asymptotic large k form, S - k2(x-1)  = 1 /  k2-” depends 
on the anomalous dimension x. For x = Q (appropriate to the Ising spin-spin correlation 
function) the second term in (24)  or ( 2 5 )  is less than 1% of the leading one only when 
Ikl> 16/L for a strip of width L. This slow convergence with k has also been observed 
for scattering functions for Ising models in fully finite systems with free boundary 
conditions (Kleban et a1 1986a, b) and in infinite systems at T # T, with fixed k&, 
where 6 is the bulk correlation length (Tracy and McCoy 1975). It also follows from 
(24) and (25)  that the leading asymptotic form is achieved at considerably smaller Ikl 
values when x is close to 1 or 0. In this context, it should be remembered that for any 
real system, the conformal results which hold in the continuum limit will be cut off 
for I k l a  1/ a, a = lattice spacing, due to short distance corrections. However, this high 
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k cutoff will be independent of the strip width L, in contrast to the k value governing 
the onset of the leading term in ( 2 4 )  or (25 ) ,  which will scale as 1/L. 

As ~ = l - x + O ,  (11) gives 

l+ik, ,  
S(  ky , k, ) = ?r { 1 - [ 2 y + Re t,!i (1) E IT 

+ f -Re$( 1 + k+ik,,  ) ] ~ + 0 ( . ‘ ) }  
k = l  IT 

so that the Fourier transform in ( 4 )  diverges as I / & ,  due to the short-distance behaviour 
of g. This feature is unphysical for the reasons given above. It may be remedied by 
defining, for x < 1, 

S ( k )  = S ( k )  - S ( 0 )  (27) 

which is equivalent to replacing the exponential in ( 4 )  by exp[i(hy + k,B)] - 1. 
This redefinition does not affect the lineshape of the structure function since the 

divergent term in (26) is independent of k. It follows that, as x +  1, S ( k )  is determined 
by the O ( E )  term in the curly bracket in (26). This function is illustrated in figure 3. 
For ky + 03, k,  fixed, 

m 

9+2.nt,!i(t)-cr(ke’)lnfk,- - ’(‘ k e ) l n { [ ( l + k ) 2 +  k : ] / 4 } .  
k = l  2 

It is easy to see that S is bounded above and below by f( k,) In] k,l+ C( k , )  in this 
limit. If k,  is an integer, 

$+ -2.n(y+ln 2) - .n ln[( l+ k e ) 2 +  kt] (29) 

-20  d , , ,  , , , , / ,  , , , , , ,  , ,  , , , , ,  , , , , , ,  , , , , , , , , , , / ,  , ,  , , , , , ,  , , /  

0 1 2 3 4 5 

k 

Figure 3. Subtracted structure function (see equation (27)) for an infinite strip of w i d t l  
2 1 ~  with periodic boundary conditions and anomalous dimension x = 1. Full curve: S 
against k, for k , = O .  The Ik,l+m behaviour is logarithmic as per equation (29). For 
k, = 0, the dotted curve gives the form of S valid for lkel + m, lkel = integer (equation ( 3 1 ) i  
while the broken curve illustrates the exact value (equation (30) ) .  Negative values for S 
are due to its definition (equation (27) ) .  The lineshape is not altered by this feature (see text). 
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as k,+oo.  For k y = O  

which, for k,  an integer, behaves as 

S +  - 2 r (  y + In 2 )  - 27r lnlk,l (31) 

as I kel + W .  Thus s' has a logarithmic lineshape at large k, or k,. This feature is due 
to the l / r 2  behaviour of g at small distances. 

The structure function satisfies S ( k ) a O  since it is the Fourier transform of a 
two-point correlation function. Negative values of s' and the approach of s' to -CC at 
large lkl for x = 1 are, on the other hand, permissible since an infinite term has been 
subtracted in defining this quantity (equation (27)).  

Finally, we note that recent transfer matrix calculations (Bartelt and Einstein 1986) 
on the simple Ising model agree well with our results. For T = T, and infinite cylinders 
of circumference L, 6 G L / a  s 9 ,  S (  k , )  (with k, = 0) agrees with ( 1  1 )  within 5 %  or 
better for O s  k, s 1 .  For larger k values, the structure functions at different widths 
are not related by scaling, presumably due to non-universal short-distance effects. Note 
that the k range of agreement, for these L values, is below the point at which the 
leading asymptotic term in S is dominant (see the discussion following equation ( 2 5 ) ) .  
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